Northeast Fisheries Science Center Reference Document 93-25

# Description of the 1992 Oceanographic Conditions on the Northeast Continental Shelf

# by

# Tamara Holzwarth-Davis and Maureen H. Taylor

NOAA/National Marine Fisheries Service Northeast Fisheries Science Center Environmental Processes Division Woods Hole, MA 02543-1097

November 1993

The Northeast Fisheries Science Center Reference Document are a series of informal reports produced by the Center for timely transmission of results obtained through work at the various NEFSC labs. The douments are reviewed internally before publication, but are not considered formal literature. The National Marine Fisheries Service does not endorse any proprietary material, process, or product mentioned in these reports. To obtain additional copies of this report contact, Information Services Unit, Northeast Fisheries Science Center, Woods Hole, MA 02543 (508-548-5123, ext. 244).

The correct citation for the document is: Holzwarth, Tamara J. and Maureen H. Taylor. 1993. Description of Oceanographic Conditions on the Northeast Continental Shelf. NOAA/NMFS/NEFSC: Woods Hole, MA. *NEFSC* [Northeast Fisheries Science Center] *Ref. Doc.* 93-25.

### **TABLE OF CONTENTS**

| Abstract                 | 1      |
|--------------------------|--------|
| Introduction             | 1      |
| Data and Methods         | 1      |
| Results                  | 1      |
| Discussion               | 2      |
| References               | 2      |
| Discussion<br>References | 2<br>2 |

## **List of Tables**

| Table 1. | Summary of 1992 cruises                                                     |   |
|----------|-----------------------------------------------------------------------------|---|
| Table 2. | Summary of cruise information and hydrographic work completed               | 4 |
| Table 3. | Areal average surface and bottom temperature and temperature anomaly        |   |
|          | for the NEFSC 1992 cruises in the five regions of the northeast continental |   |
|          | shelf shown in Figure 1                                                     |   |
|          | 5                                                                           |   |

### **List of Figures**

| Figure 1.  | The region of the northeast continental shelf covered by the Northeast          |
|------------|---------------------------------------------------------------------------------|
|            | Fisheries Science Center cruises during 1992 14                                 |
| Figure 2.  | The 1992 areal average surface and bottom temperature values from Table 3 15    |
| Figure 3.  | The 1992 areal average surface and bottom temperature anomalies from Table 3 16 |
| Figure 4.  | Hydrographic stations occupied during the larval herring/sand lance             |
|            | study DEL9201 17                                                                |
| Figure 5.  | The surface and bottom temperature distribution for the                         |
|            | larval herring/sand lance study DEL9201                                         |
| Figure 6.  | The surface and bottom salinity distribution for the                            |
|            | larval herring/sand lance study DEL9201 19                                      |
| Figure 7.  | The surface and bottom temperature anomaly distributionn for the                |
|            | larval herring/sand lance study DEL920120                                       |
| Figure 8.  | Hydrographic stations occupied during the larval herring/sand lance             |
|            | study DEL9202                                                                   |
| Figure 9.  | The surface and bottom temperature distribution for the                         |
|            | larval herring/sand lance study DEL920222                                       |
| Figure 10. | The surface and bottom salinity distribution for the                            |
|            | larval herring/sand lance study DEL920223                                       |
| Figure 11. | The surface and bottom temperature anomaly distribution for the                 |
|            | larval herring/sand lance study DEL920224                                       |
| Figure 12. | Hydrographic stations occupied during the winter flounder survey                |
|            | ALB9202/DEL9203                                                                 |
| Figure 13. | The surface temperature distribution for the winter flounder survey             |
|            | ALB9202/DEL9203                                                                 |
| Figure 14. | The bottom temperature distribution for the winter flounder survey              |
|            | ALB9202/DEL920327                                                               |
| Figure 15. | The surface salinity distribution for the winter flounder survey                |
| •          | ALB9202/DEL9203                                                                 |

#### Page iv

| Figure 16. | The bottom salinity distribution for the winter flounder survey                      |
|------------|--------------------------------------------------------------------------------------|
|            | ALB9202/DEL9203                                                                      |
| Figure 17. | The surface temperature anomaly distribution for the winter flounder survey          |
|            | ALB9202/DEL9203                                                                      |
| Figure 18. | The bottom temperature anomaly distribution for the winter flounder survey           |
|            | ALB9202/DEL9203                                                                      |
| Figure 19. | Hydrographic stations occupied during the spring bottom trawl survey ALB9203         |
| Figure 20. | The surface temperature distribution for the spring bottom trawl survey ALB9203      |
| Figure 21. | The bottom temperature distribution for the spring bottom trawl survey ALB9203       |
| Figure 22. | The surface salinity distribution for the spring bottom trawl survey ALB9203         |
| Figure 23. | The bottom salinity distribution for the spring bottom trawl survey ALB9203          |
| Figure 24. | The surface temperature anomaly distribution for the                                 |
|            | spring bottom trawl survey ALB9203                                                   |
| Figure 25. | The bottom temperature anomaly distribution for the                                  |
|            | spring bottom trawl survey ALB9203                                                   |
| Figure 26. | Hydrographic stations occupied during the marine mammal                              |
|            | sighting survey DEL9205                                                              |
| Figure 27. | Hydrographic stations occupied during the harbor porpoise                            |
|            | migration study EG9201                                                               |
| Figure 28. | Hydrographic stations occupied during the larval cod survey ALB9204                  |
| Figure 29. | The surface and bottom temperature distribution for the                              |
|            | larval cod survey ALB9204                                                            |
| Figure 30. | The surface and bottom salinity distribution for the larval cod survey ALB9204       |
| Figure 31. | The surface and bottom temperature anomaly distribution                              |
|            | for the larval cod survey ALB9204                                                    |
| Figure 32. | Hydrographic stations occupied during the stratification study ALB9205               |
| Figure 33. | The surface and bottom temperature distribution for the                              |
|            | stratification study ALB9205                                                         |
| Figure 34. | The surface and bottom salinity distribution for the                                 |
|            | stratification study ALB9205                                                         |
| Figure 35. | The surface and bottom temperature anomaly distribution for the stratification study |
|            | ALB9205                                                                              |
| Figure 36. | Hydrographic stations occupied during the harbor porpoise                            |
|            | migration study EG9202                                                               |
| Figure 37. | Hydrographic stations occupied during the clam survey DEL9206                        |
| Figure 38. | The surface temperature distribution for the clam survey DEL9206                     |
| Figure 39. | The bottom temperature distribution for the clam survey DEL9206                      |
| Figure 40. | The surface salinity distribution for the clam survey DEL9206                        |
| Figure 41. | The bottom salinity distribution for the clam survey DEL9206                         |
| Figure 42. | The surface temperature anomaly distribution for the clam survey DEL9206             |
| Figure 43. | The bottom temperature anomaly distribution for the clam survey DEL9206              |
| Figure 44. | Hydrographic stations occupied during the harbor porpoise migration study EG9203 57  |
| Figure 45. | Hydrographic stations occupied during the                                            |
|            | summer bottom trawl survey DEL9207                                                   |
| Figure 46. | The surface and bottom temperature distribution for the                              |
|            | summer bottom trawl survey DEl9207                                                   |

.

| Figure 47. | The surface and bottom salinity distribution for the                                      |
|------------|-------------------------------------------------------------------------------------------|
|            | summer bottom trawl survey DEl920760                                                      |
| Figure 48. | Hydrographic stations occupied during the                                                 |
|            | harbor porpoise sighting survey AJ9201                                                    |
| Figure 49. | The surface temperature and salinity distribution for the                                 |
|            | harbor porpoise sighting survey AJ9201                                                    |
| Figure 50. | Hydrographic stations occupied during the scallop survey ORE9204                          |
| Figure 51. | The surface temperature distribution for the scallop survey ORE9204                       |
| Figure 52. | The bottom temperature distribution for the scallop survey ORE9204                        |
| Figure 53. | The surface salinity distribution for the scallop survey ORE9204                          |
| Figure 54. | The bottom salinity distribution for the scallop survey ORE9204                           |
| Figure 55. | The surface temperature anomaly distribution for the scallop survey ORE9204               |
| Figure 56. | The bottom temperature anomaly distribution for the scallop survey ORE9204                |
| Figure 57. | Hydrographic stations occupied during the shrimp survey GM921270                          |
| Figure 58. | The surface and bottom temperature distribution for the shrimp survey GM921971            |
| Figure 59. | The surface and bottom temperature anomaly distribution                                   |
|            | for the shrimp survey GM921972                                                            |
| Figure 60. | Hydrographic stations occupied during the fall bottom trawl survey ALB921173              |
| Figure 61. | The surface temperature distribution for the fall bottom trawl survey ALB9211 $\ldots$ 74 |
| Figure 62. | The bottom temperature distribution for the fall bottom trawl survey ALB9211              |
| Figure 63. | The surface salinity distribution for the fall bottom trawl survey ALB921176              |
| Figure 64. | The bottom salinity distribution for the fall bottom trawl survey ALB921177               |
| Figure 65. | The surface temperature anomaly distribution for the                                      |
|            | fall bottom trawl survey ALB9211                                                          |
| Figure 66. | The bottom temperature anomaly distribution for the                                       |
|            | fall bottom trawl survey ALB9211                                                          |
| Figure 67. | Hydrographic stations occupied during the                                                 |
|            | larval herring/sand lance study DEL921280                                                 |
| Figure 68. | The surface and bottom temperature distribution for the                                   |
|            | larval herring/sand lance study DEL9212                                                   |
| Figure 69. | The surface and bottom salinity distribution for the                                      |
|            | larval herring/sand lance study DEL921282                                                 |
| Figure 70. | The surface and bottom temperature anomaly distribution for the                           |
|            | larval herring/sand lance study DEL9212                                                   |
| Figure 71. | Hydrographic stations occupied during the                                                 |
| _          | larval herring/sand lance study DEL9214                                                   |
| Figure 72. | The surface and bottom temperature distribution for the                                   |
| -          | larval herring/sand lance study DEL9214                                                   |
| Figure 73. | The surface and bottom salinity distribution for the                                      |
|            | larval herring/sand lance study DEL9214                                                   |
| Figure 74. | The surface and bottom temperature anomaly distribution for the                           |
|            | larval herring/sand lance study DEL921487                                                 |
|            |                                                                                           |

#### ABSTRACT

A summary of hydrographic observations for 18 surveys on the northeast continental shelf during 1992 is presented. Plots of station positions, as well as surface and bottom distributions of temperature, salinity, and temperature anomaly are portrayed. The average surface and bottom temperatures and temperature anomalies have been calculated for each survey in five geographic regions over the northeast continental shelf: western Gulf of Maine (GOMW), eastern Gulf of Maine (GOME), Georges Bank (GB), northern Middle Atlantic Bight (MABN) and southern Middle Atlantic Bight (MABS).

#### INTRODUCTION

The Northeast Fisheries Science Center (NEFSC) conducts several different surveys off the northeast continental shelf each year. Complete coverage of the shelf (Cape Hatteras to the Gulf of Maine) occurs during the spring and fall bottom-trawl surveys. Larval herring, cod, and sand lance surveys cover the Georges Bank area. Other special interest cruises occur throughout the year, such as marine mammal sighting surveys, shellfish surveys, and summer and winter bottom trawl surveys. Station coverage on these cruises varies.

The oceanographic conditions during 1991 are described in Holzwarth-Davis and Taylor (1992).

Temperature and salinity observations from 18 NEFSC surveys conducted during 1992 are summarized and presented in this report. Cruise operation summaries and station plots are presented for all cruises. Distribution plots of surface and bottom temperature, salinity, and temperature anomaly are contoured where sufficient data are available. Areal average temperatures and the corresponding temperature anomalies are also presented for the five different regions on the shelf.

#### DATA AND METHODS

Temperature and salinity measurements were obtained with a Seabird SBE 19 conductivity, temperature and pressure recording profiling instrument (*Profiler*). This instrument measures the pressure, temperature, and conductivity of the water two times per second. Two different methods were used for deployment of the instrument, depending upon the type of work conducted at a station. Whenever a plankton haul was done, the *Profiler* was placed above the bongo nets, and a double oblique tow was made. If no plankton haul was done, the *Profiler* was deployed vertically down and up through the water column. In both cases, the *Profiler* was lowered to within 10 m of the bottom or to a maximum depth of 200 m. Twice a day, a salinity sample was taken from the bottom of a vertical profile cast in order to calibrate the conductivity cell. Water samples were analyzed on shore with a Guildline Autosal salinometer.

All data from the R/V *Gloria Michelle* shrimp cruise and from 18 stations of the R/V *Delaware II* autumn bottom trawl survey were collected with an expendable bathythermograph (XBT) probe. These data sets contain temperature only.

All raw data were averaged into 1 m increments. The data were edited, cleaned, and converted to a standard 80-column ASCII formatted cruise file.

Station distributions and horizontal contour plots of the surface and bottom temperature, salinity, and temperature anomaly were prepared for each survey. Areal average temperatures and temperature anomalies were calculated for the five regions of the northeast continental shelf shown in Figure 1: western and eastern Gulf of Maine, Georges Bank, and northern and southern Middle Atlantic Bight. The areal averaging was done using the method described in Holzwarth and Mountain (1990). The areal average temperatures and temperature anomalies were plotted against the mid-date of all observations within a region of each cruise

#### RESULTS

The NEFSC cruises for which data are presented in this report are listed in Table 1. A summary of each cruise is listed in Table 2. The summary includes information on the type of cruise, its objectives, dates, specific information on the number of hydrographic stations, type(s) of instruments used, salinity calibration value, and notes pertaining to instrument performance and data processing.

Table 3 lists the surface and bottom areal average temperatures and temperature anomalies that were calculated for each of the five regions. For most cruises, areal average temperatures and anomalies could not be calculated for all regions due to limited station coverage. For several such cases a simple average (not an areal weighted mean) was determined for the observations in the region; these values are indicated by an asterisk. The standard deviations are also listed. SDV1 indicates how well the calculated anomaly represents the true regional average temperature anomaly. SDV2 is an indicator of how closely the areal average matches the anomaly at any particular location within that region (see Holzwarth and Mountain 1990 for explanation of SDV1 and SDV2).

Figures 2 through 3 present the time series of surface and bottom average temperature and temperature anomaly for each region. These values, taken from Table 3, include only the true areal averaged data.

Station positions and distributions of surface and bottom temperature, salinity, and temperature anomaly for the different cruises are presented in Figures 4 through 74. Temperature, salinity, and temperature anomaly distributions were not prepared for the surface and bottom of R/V Delaware II 9205 or R/V Phocoena 9201, 9202, and 9203 because the distribution of the stations was such that accurate contours could not be produced by the software. No temperature anomaly distributions were produced for R/V Delaware 9207, because the distance to standard MARMAP stations was too great for a reliable comparison to be made. Bottom distributions are not presented for R/V Abel J 9201, because on many stations the Profiler did not sample to within 10 m of the bottom (the criteria for a value to be considered a "bottom" sample). No salinity samples were taken on the R/V *Gloria Michelle* 9219; no salinity plots were generated.

#### DISCUSSION

The most notable event of 1992 was the presence of Scotian Shelf Water (less than 32.0 Practical Salinity Units) on the southern flank of Georges Bank during much of the winter and spring months. These anomalous conditions were first observed in January during the DEL9202 survey and persisted through the following months. Low salinity and cold temperatures were most evident during the April 27 to May 8 cruise aboard the R/V *Albatross IV*. Satellite imagery at that time also supports these observations (Jim Bisagni, personal communication).

Figure 3 shows that Georges Bank temperatures were colder than normal throughout most of the year at both the surface and the bottom. None of the other regions showed a strong trend towards either colder or warmer conditions.

#### REFERENCES

- Holzwarth, T.J. and D. Mountain. 1990. Surface and bottom temperature distributions from the Northeast Fisheries Center spring and fall bottom trawl survey program, 1963-1987.
  Woods Hole, MA: NOAA/NMFS/Northeast Fisheries Center. NEFSC Ref. Doc. 90-03.
- Holzwarth-Davis, T.J. and M. H. Taylor. 1992.
  Description of the 1991 oceanographic conditions on the northeast continental shelf.
  Woods Hole, MA: NOAA/NMFS Northeast Fisheries Science Center. NEFSC Ref. Doc. 92-08.

Page3

Table 1. Summary of 1992 cruises

| Cruise              | Program                   | Dates                    | <b>Region</b> <sup>1</sup> |
|---------------------|---------------------------|--------------------------|----------------------------|
| DEL9201             | Larval Herring Study      | 6-20 January             | MABN,GB,GOMW               |
| DEL9202<br>ALB9202- | Larval Herring Study      | 28 January - 12 February | MABN,GB,GOMW               |
| DEL920311           | Winter Btm. Trawl Survey  | 11 February - 6 March    | MAB,GB                     |
| ALB9203             | Spring Btm. Trawl Survey  | 2 March - 16 April       | NE Shelf                   |
| DEL9205             | Marine Mammal Survey      | 16 March - 2 April       | MAB slope                  |
| EG9201              | Harbor Porpoise Study     | 9-14 April               | GOM                        |
| ALB9204             | Marine Ecosystem Response | 27 April - 8 May         | GB                         |
| ALB9205             | Marine Ecosystem Response | 18-29 May                | GB                         |
| EG9202              | Harbor Porpoise Study     | 20-25 May                | GOM                        |
| DEL9206             | Shellfish (Clam) Survey   | 8 June - 13 July         | NE Shelf                   |
| EG9203              | Harbor Porpoise Study     | 23-28 June               | GOM                        |
| DEL9207             | Summer Btm. Trawl Survey  | 27 July - 10 August      | GOM                        |
| AJ9201              | Harbor Porpoise Survey    | 29 July - 6 September    | GOM                        |
| ORE9204             | Sea Scallop Survey        | 1-22 August              | MAB,GB                     |
| GM9219              | Shrimp Survey             | 3-15 August              | GOM                        |
| ALB9211             | Autumn Btm. Trawl Survey  | 8 September - 28 October | NE Shelf                   |
| DEL9212             | Larval Herring Study      | 26 October - 4 November  | MABN,GB,GOMW               |
| DEL9214             | Larval Herring Study      | 1-18 December            | MABN,GB,GOMW               |

 Regional abbreviations GB=Georges Bank GOM=Gulf of Maine MAB=Middle Atlantic Bight MABN=Northern MAB NE Shelf=Northeast Continental Shelf GOMW=Western GOM

| CRUISE SUMMARY          |                                 |         |         |  |
|-------------------------|---------------------------------|---------|---------|--|
| Vessel: R/V Delaware II |                                 | Cruise: | DEL9201 |  |
| Program:                | Larval herring/Sand lance Study |         |         |  |
| Dates:                  | January 6 - 20, 1992            |         |         |  |
| Sea days:               | 11                              |         |         |  |
| Instrument(s).          | Profiler 851                    |         |         |  |

Table 2. Summary of cruise information and hydrographic work completed

**Cruise objectives:** To monitor the changing status of Atlantic herring in the Georges Bank area and the recruitment of sand lance larvae. Principally (1) determine larval distribution, abundance, and production, (2) index spawning biomass, and (3) provide systematic collections of herring larvae for age and growth estimates.

Total # of stations:85# Vertical CTD/Profiler casts:11# Double Oblique Profiler casts:85# XBT drops:0# salinity samples:11Salt correction:No correction was needed.

**Special Notes:** Instrument performed well, data were recorded in 'real-time' mode, recording and simultaneously downloading data to a computer via a conducting core cable.

|                   | CRUISE SUMMARY                  |         |         |
|-------------------|---------------------------------|---------|---------|
| Vessel: R/V Delau | vare II                         | Cruise: | DEL9202 |
| Program:          | Larval herring/Sand lance Study |         |         |
| Dates:            | January 28 - February 12, 1992  |         |         |
| Sea days:         | 15                              |         |         |
| Instrument(s):    | Profiler 851                    |         |         |

**Cruise objectives:** To monitor the changing status of Atlantic herring in the Georges Bank area and the recruitment of sand lance larvae. Principally (1) determine larval distribution, abundance and production, (2) index spawning biomass, (3) provide systematic collections of herring larvae for age and growth estimates.

| Total <b># of stations</b> :     | 123        |
|----------------------------------|------------|
| # Vertical CTD/Profiler casts:   | 14         |
| # Double Oblique Profiler casts: | 123        |
| # XBT drops:                     | 0          |
| # salinity samples:              | 14         |
| Salt correction:                 | +0.011 PSU |

Special Notes: Instrument performed well, used in real-time mode.

| oss IV                      | Cruises:                                                                                           | ALB9202                                                                                                     |
|-----------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| are II                      |                                                                                                    | DEL9203                                                                                                     |
| Winter Bottom Trawl Survey  |                                                                                                    |                                                                                                             |
| February 11 - March 6, 1992 |                                                                                                    |                                                                                                             |
| 19                          |                                                                                                    |                                                                                                             |
| Profiler 456                |                                                                                                    |                                                                                                             |
|                             | ss IV<br>are II<br>Winter Bottom Trawl Survey<br>February 11 - March 6, 1992<br>19<br>Profiler 456 | SS IV Cruises:<br>are II<br>Winter Bottom Trawl Survey<br>February 11 - March 6, 1992<br>19<br>Profiler 456 |

**Cruise objectives:** To (1) determine the winter distribution and relative abundance of fish species, (2) collect biological samples for studies of age and growth relationships, fecundity, maturity, and food habits, (3) collect hydrographic and meteorological data, (4) collect ichthyoplankton and zooplankton samples, and (5) make data and sample collections for cooperative researchers and programs.

| Total # of stations:             | 138        |
|----------------------------------|------------|
| # Vertical CTD/Profiler casts:   | 104        |
| # Double Oblique Profiler casts: | 16         |
| # XBT drops:                     | 5          |
| <pre># salinity samples:</pre>   | 26         |
| Salt correction:                 | +0.021 PSU |

**Special Notes:** Part II of the survey took place aboard the *R/V Delaware* because of mechanical problems with the *R/V Albatross. Profiler* 456 performed well in the real-time mode.

|         |            | CRUISE SUMMARY             |         |         |
|---------|------------|----------------------------|---------|---------|
| Vessel: | R/V Albat  | ross IV                    | Cruise: | ALB9203 |
|         |            |                            |         |         |
|         | Program:   | Spring Bottom Trawl Survey |         |         |
|         | Dates:     | March 2 - April 16, 1992   |         |         |
|         | Sea days:  | 42                         |         |         |
| Insti   | rument(s): | Profiler 853/Profiler 851  |         |         |

**Cruise objectives:** To (1) determine the spring distribution and relative abundance of fish species, (2) collect biological samples for studies of age and growth relationships, fecundity, maturity, and food habits, (3) collect hydrographic and meteorological data, (4) collect ichthyoplankton and zooplankton samples, and (5) make data and sample collections for cooperative researchers and programs.

| 326                          |
|------------------------------|
| 216                          |
| 99                           |
| 5                            |
| 43 (for #853)/ 21 (for #851) |
| +0.037 PSU/none needed       |
|                              |

**Special Notes:** Both instruments used in real-time mode. *Profiler* 853 was damaged near the end of the second leg and replaced with *Profiler* 851. On several occasions *Profiler* 853 stopped working during the upcast and twice would not work at all. These problems may have been related to the damage to the bulkhead or to a bad connection. One bad weather port call was made on the second leg and the third leg ended one day early.

Table 2. Continued.

| Vessel: | R/V Delau  | CRUISE SUMMARY                | Cruise: | DEL9205 |
|---------|------------|-------------------------------|---------|---------|
|         | Program:   | Marine Mammal Sighting Survey |         |         |
|         | Dates:     | March 16 - April 2, 1992      |         |         |
|         | Sea days:  | 17                            |         |         |
| Inst    | rument(s): | Profiler 456/Profiler 360     |         |         |

**Cruise objectives:** To (1) investigate and determine the fine scale distribution and habitat utilization within warm core rings, canyons and the shelf edge break, (2) to conduct line-transect population surveys along the shelf edge break and out to the Gulf Stream wall, and (3) determine how the composition of marine mammal species varies spatially.

| Total # of stations:             | 29                            |
|----------------------------------|-------------------------------|
| # Vertical CTD/Profiler casts:   | 29                            |
| # Double Oblique Profiler casts: | 0                             |
| # XBT drops:                     | 0                             |
| <pre># salinity samples:</pre>   | 5/2                           |
| Salt correction:                 | +0.023 PSU/not enough samples |

**Special Notes:** Instrument used in #456 used in real-time mode until it failed at station 19. *Profiler* #360 was used to complete the cruise. It worked best when data was internally recorded (archived) and then downloaded to the computer. Hand editing was required for some of the raw data. Data from four stations were lost. Several days of work were lost due to adverse sighting conditions. *Profiler* #456 was returned to the manufacturer for repairs.

| Vessel: R/V Phoco           | Cruise:                                               | EG9201 |  |
|-----------------------------|-------------------------------------------------------|--------|--|
| Program:<br>Dates:          | Harbor Porpoise Migration Study<br>April 9 - 14, 1992 |        |  |
| Sea days:<br>Instrument(s): | 5<br>Profiler 360                                     |        |  |

**Cruise objectives:** To investigate the distribution of harbor porpoise and the water characteristics in the Penobscot Bay, Maine area.

| Total <b># of stations</b> :     | 16                 |
|----------------------------------|--------------------|
| # Vertical CTD/Profiler casts:   | 16                 |
| # Double Oblique Profiler casts: | 0                  |
| # XBT drops:                     | 0                  |
| <pre># salinity samples:</pre>   | 4                  |
| Salt correction:                 | not enough samples |

**Special Notes:** Instrument used in archived mode and generally performed well. Instrument was hand lowered to the bottom. The R/V *Phocoena* is a 17 ft hard-bottom, inflatable boat.

| Vessel: R/V Alba | CRUISE SUMMARY            | Cruise: ALB9204 |
|------------------|---------------------------|-----------------|
| Program:         | Marine Ecosystem Response |                 |
| Dates:           | April 27 - May 8, 1992    |                 |
| Sea days:        | 12                        |                 |
| Instrument(s):   | Profiler 851/Profiler 360 |                 |

**Cruise objectives:** To (1) acquire sidescan sonar data, video surveys, and bottom grabs of selected sites on Georges Bank to be used for improved detailed interpretation and digital mapping of the marine environment and fisheries habitats, and (2) to acquire information on the abundance and distribution of cod and haddock eggs and early larvae using MOCNESS and CTD sampling gear.

| Total # of stations:                    | 52                                              |
|-----------------------------------------|-------------------------------------------------|
| # Vertical CTD/Profiler casts:          | 34                                              |
| # Double Oblique <i>Profiler</i> casts: | 21                                              |
| # XBT drops:                            | 0                                               |
| <pre># salinity samples:</pre>          | 6/2                                             |
| Salt correction:                        | None, not enough samples for either instrument. |

**Special Notes:** *Profiler* #360 was used on stations 1 through 43, *Profiler* #851 was used on the remainder of the stations. Both instruments were used in the real-time mode and the conductivity data experienced severe spiking which was caused by hydraulic fluid leaking into the slipring. Scotian Shelf Water was observed on the southern flank of Georges Bank.

| Vessel: R/V Albat           | CRUISE SUMMARY                                 | Cruise: | ALB9205 |
|-----------------------------|------------------------------------------------|---------|---------|
| Program:<br>Dates:          | Marine Ecosystem Response<br>May 18 - 29, 1992 |         |         |
| Sea days:<br>Instrument(s): | 12<br>Profiler 853/Profiler 456                |         |         |

**Cruise objectives:** To (1) acquire information on the abundance and distribution of ichthyoplankton and zooplankton on the southern flank of Georges Bank in relation to water column conditions, (2) deploy and recover two moorings for measuring physical and biological parameters at a fixed site, (3) make repeated observations of the plankton at the fixed site and within a drifting patch of water tagged by transmitting buoys, and (4) make these observations in close cooperation with the R/V Endeavor.

| 35*                                             |
|-------------------------------------------------|
| 5                                               |
| 35                                              |
| 0                                               |
| 1/4                                             |
| None, not enough samples for either instrument. |
|                                                 |

**Special Notes:** \*There were approximately 450 stations at which many other instruments were deployed. Instrument #853 was used at the first station only. Both instruments were used in real-time mode. Scotian Shelf Water was still evident at some stations.

| Vessel: R/V Phoce | CRUISE SUMMARY                  | Cruise: | EG9202                                |
|-------------------|---------------------------------|---------|---------------------------------------|
| Program:          | Harbor Porpoise Migration Study |         | · · · · · · · · · · · · · · · · · · · |
| Dates:            | May 20 - 25, 1992               |         |                                       |
| Sea days:         | 5                               |         |                                       |
| Instrument(s):    | Profiler 851                    |         |                                       |

**Cruise objectives:** To investigate the distribution of harbor porpoise and the water characteristics in the Penobscot Bay, Maine area.

| Total # of stations:             | 14                 |
|----------------------------------|--------------------|
| # Vertical CTD/Profiler casts:   | 14                 |
| # Double Oblique Profiler casts: | 0                  |
| # XBT drops:                     | 0                  |
| # salinity samples:              | 4                  |
| Salt correction:                 | not enough samples |
|                                  |                    |

**Special Notes:** Instrument used in archived mode and generally performed well. Instrument was hand lowered to the bottom.

| <b>Vessel:</b> R/V Delau    | CRUISE SUMMARY Vessel: R/V Delaware II Cruise: DEL9206 |           |  |  |
|-----------------------------|--------------------------------------------------------|-----------|--|--|
| Program:<br>Dates:          | Shellfish Resource Assessme<br>June 8 - July 13, 1992  | nt Survey |  |  |
| Sea days:<br>Instrument(s): | 29<br>Profiler 853                                     |           |  |  |

**Cruise objectives:** To (1) investigate the distribution and relative abundance of the surf clam (Spisula solidissima), ocean quahog (Arctica islandica), and other mollusks, (2) collect biological samples and data relative to assessment needs, (3) monitor hydrographic and meteorological conditions, (4) make collections for other institutions and NMFS laboratories, and (5) on part III, determine the abundance and range of the quahog fishery along the eastern Maine coast.

| Total # of stations:             | 493        |
|----------------------------------|------------|
| # Vertical CTD/Profiler casts:   | 108        |
| # Double Oblique Profiler casts: | 0          |
| # XBT drops:                     | 0          |
| <pre># salinity samples:</pre>   | 43         |
| Salt correction:                 | +0.026 PSU |

**Special Notes:** The instrument performed well in the real-time mode.

Page9

Table 2. Continued.

| Vessel:        | CRUISE SUMMARY<br>R/V Phocoena  | Cruise: | EG9203 |
|----------------|---------------------------------|---------|--------|
| Program:       | Harbor Porpoise Migration Study |         |        |
| Dates:         | June 23- 28, 1992               |         |        |
| Sea days:      | 5                               |         |        |
| Instrument(s): | Profiler 851                    |         |        |

**Cruise objectives:** To investigate the distribution of harbor porpoise and the water characteristics in the Penobscot Bay, Maine area.

| Total # of stations:             | 16                 |
|----------------------------------|--------------------|
| # Vertical CTD/Profiler casts:   | 16                 |
| # Double Oblique Profiler casts: | 0                  |
| # XBT drops:                     | 0                  |
| # salinity samples:              | 6                  |
| Salt correction:                 | not enough samples |

**Special Notes:** Instrument used in archived mode and generally performed well. Instrument was hand lowered to the bottom.

| CRUISE SUMMARY   |                                   |         |         |  |  |
|------------------|-----------------------------------|---------|---------|--|--|
| Vessel: R/V Dela | ware II                           | Cruise: | DEL9207 |  |  |
| Program:         | Gulf of Maine Bottom Trawl Survey |         |         |  |  |
| Dates:           | July 27 - August 10, 1992         |         |         |  |  |
| Sea days:        | 15                                |         |         |  |  |
| Instrument(s):   | Profiler 851                      |         |         |  |  |

**Cruise objectives:** To (1) determine the seasonal distribution and relative abundance of fish species in the Gulf of Maine, (2) collect biological samples for studies of age and growth relationships, fecundity, maturity, and food habits, (3) collect hydrographic and meteorological data, (4) collect ichthyoplankton and zooplankton samples.

| 120                     |
|-------------------------|
| 112                     |
| 0                       |
| 0                       |
| 26                      |
| no correction necessary |
|                         |

Special Notes: Profiler performed well, used in real-time mode.

| CRUISE SUMMARY    |                 |                          |         |        |
|-------------------|-----------------|--------------------------|---------|--------|
| <b>Vessel:</b> R/ | V Abel J        |                          | Cruise: | AJ9201 |
| Ргод              | gram: Harbor    | Porpoise Sighting Survey |         |        |
| Ľ                 | Dates: July 29  | ) - September 6, 1992    |         |        |
| Sea               | <b>days:</b> 39 |                          |         |        |
| Instrume          | nt(s): Profiler | 853                      |         |        |

**Cruise objectives:** To perform sighting survey in Gulf of Maine, Lower Bay of Fundy, and southern Scotian Shelf and to estimate abundance of marine mammals, in particular, harbor porpoise.

| Total # of stations:             | 56           |
|----------------------------------|--------------|
| # Vertical CTD/Profiler casts:   | 56           |
| # Double Oblique Profiler casts: | 0            |
| # XBT drops:                     | 0            |
| # salinity samples:              | 15           |
| Salt correction:                 | none applied |
|                                  |              |

**Special Notes:**Salinity samples were taken at the surface and were not reliable for calibration purposes. The instrument was used in archived mode and performed well.

| Vessel: R/V Orego           | CRUISE SUMMARY                            | Cruise: | ORE9204 |
|-----------------------------|-------------------------------------------|---------|---------|
| Program:<br>Dates:          | Sea Scallop Survey<br>August 1 - 22, 1992 |         |         |
| Sea days:<br>Instrument(s): | 21<br>CTD 1510                            |         |         |

**Cruise objectives:** To (1) determine the distribution and relative abundance of the sea scallop Placoppecten magellanicus and Iceland scallop Chlamys islandica, (2) collect biological samples and assessment data, (3) monitor hydrographic and meteorological conditions, and (4) make collections for other scientists .

| Total <b>#</b> of stations:      | 420          |
|----------------------------------|--------------|
| # Vertical CTD/Profiler casts:   | 113          |
| # Double Oblique Profiler casts: | 0            |
| # XBT drops:                     | 9            |
| <pre># salinity samples:</pre>   | 33           |
| Salt correction:                 | none applied |

**Special Notes:** Salinity samples may have been mixed up in the case, many samples were taken in shallow (less than 30 meters) water and did not give consistent comparisons to the CTD. The instrument was used in archived mode. Faulty equipment caused a few problems while downloading data, but for most of the stations the CTD performed well.

| Vessel: R/V Glorid          | CRUISE SUMMARY                                       | Cruise: | GM9219 |
|-----------------------------|------------------------------------------------------|---------|--------|
| Program:<br>Dates:          | Summer Gulf of Maine Shrimp S<br>August 3 - 15, 1992 | urvey   |        |
| Sea days:<br>Instrument(s): | 13                                                   |         |        |

Cruise objectives: To investigate the population of northern shrimp in the Gulf of Maine.

| Total # of stations:             | 57  |
|----------------------------------|-----|
| # Vertical CTD/Profiler casts:   | 0   |
| # Double Oblique Profiler casts: | 0   |
| # XBT drops:                     | 57  |
| <pre># salinity samples:</pre>   | 0   |
| Salt correction:                 | N/A |
|                                  |     |

**Special Notes:** No CTD or *Profiler* was used on this trip. Six bad XBT drops were deleted. This vessel was using the SEAS III data acquisition software for the first time.

| <b>Vessel:</b> R/V Albat | CRUISE SUMMARY                 | Cruise: | ALB9211 |
|--------------------------|--------------------------------|---------|---------|
| Program:                 | Autumn Bottom Trawl Survey     |         |         |
| Dates:                   | September 8 - October 28, 1992 |         |         |
| Sea days:                | 45                             |         |         |
| Instrument(s):           | Profiler 851/ Profiler 360     |         |         |

**Cruise objectives:** To (1) determine the autumn distribution and relative abundance of fish species, (2) collect biological samples for studies of age and growth relationships, fecundity, maturity and food habits, (3) collect hydrographic and meteorological data, (4) collect ichthyoplankton and zooplankton samples, and (5) make data and sample collections for cooperative researchers and programs.

| 353                    |
|------------------------|
| 186                    |
| 120                    |
| 18                     |
| 6/43                   |
| +0.022 PSU/ +0.041 PSU |
|                        |

**Special Notes:** During the first 98 stations of this cruise both instruments were used in archived and real-time made in an attempt to eliminate problems with the equipment. Starting with station 99, *Profiler* #360 was used for the remainder of the cruise in the real-time mode. At the end of the cruise, #360 was found to be missing part of the pressure port, data were not noticeably affected. The pressure port has been replaced.

| <b>Vessel:</b> R/V Delau | CRUISE SUMMARY<br>vare II       | Cruise: | DEL9212 |
|--------------------------|---------------------------------|---------|---------|
| Program:                 | Larval herring/Sand lance Study |         |         |
| Dates:                   | October 26 - November 4, 1992   |         |         |
| Sea days:                | 10                              |         |         |
| Instrument(s):           | Profiler 853                    |         |         |

**Cruise objectives:** To monitor the changing status of Atlantic herring in the Georges Bank area and the recruitment of sand lance larvae. Principally (1) determine larval distribution, abundance, and production, (2) index spawning biomass, and (3) provide systematic collections of herring larvae for age and growth estimates.

| Total # of stations:             | 128        |
|----------------------------------|------------|
| # Vertical CTD/Profiler casts:   | 16         |
| # Double Oblique Profiler casts: | 128        |
| # XBT drops:                     | 0 .        |
| # salinity samples:              | 16         |
| Salt correction:                 | +0.019 PSU |

**Special Notes:** *Profiler* 853 was used in real-time mode. Instrument performed well. The trip was completed five days earlier than scheduled.

| CRUISE SUMMARY   |                                 |         |                                       |  |  |  |  |
|------------------|---------------------------------|---------|---------------------------------------|--|--|--|--|
| Vessel: R/V Dela | ware II                         | Cruise: | DEL9214                               |  |  |  |  |
| Program:         | Larval herring/Sand lance Study |         | · · · · · · · · · · · · · · · · · · · |  |  |  |  |
| Dates:           | December 1 - 18, 1992           |         |                                       |  |  |  |  |
| Sea days:        | 15                              |         |                                       |  |  |  |  |
| Instrument(s):   | Profiler 456/Profiler 853       |         |                                       |  |  |  |  |

**Cruise objectives:** To monitor the changing status of Atlantic herring in the Georges Bank area and the recruitment of sand lance larvae. Principally (1) determine larval distribution, abundance, and production, (2) index spawning biomass, and (3) provide systematic collections of herring larvae for age and growth estimates.

| Total <b># of stations</b> :     | 117                     |
|----------------------------------|-------------------------|
| # Vertical CTD/Profiler casts:   | 132                     |
| # Double Oblique Profiler casts: | 117                     |
| # XBT drops:                     | 0                       |
| # salinity samples:              | 9/5                     |
| Salt correction:                 | +0.025 PSU/none applied |

**Special Notes:** Salinity samples taken for *Profiler* #853 were from shallow stations and did not compare well. This instrument has needed little or no correction in the past. *Profiler* #456 was removed after failing at station 78. Both instruments performed well in the real-time mode.

Table 3. Areal average surface and bottom temperature and temperature anomaly for the NEFSC 1992 cruisesin the five regions of the northeast continental shelf shown in Figure 11

|         |     |                 |              | Surface |           |            |                 |              | Bottom  |      |      |
|---------|-----|-----------------|--------------|---------|-----------|------------|-----------------|--------------|---------|------|------|
| Cruise  | CD  | #Obs            | Temp<br>(°C) | Anomaly | SDV1      | SDV2       | #Obs            | Temp<br>(°C) | Anomaly | SDV1 | SDV2 |
|         |     |                 |              | (       | Gulf of M | aine West  | -               |              |         |      |      |
| DEL9201 | 11  | $8^{2}$         | 6.00         | -0.10   | 0.50      | 0.48       | 82              | 6.35         | 0.46    | 0.36 | 0.64 |
| DEL9202 | 38  | $8^2$           | 4.35         | -0.11   | 0.50      | 0.58       | $\tilde{8^2}$   | 4.71         | 0.41    | 0.36 | 0.63 |
| ALB9203 | 101 | 37              | 3.76         | -0.71   | 0.18      | 0.73       | 37              | 5.53         | 0.49    | 0.14 | 0.90 |
| DEL9206 | 191 | $6^{2}$         | 12.48        | -1.06   | 0.54      | 1.05       | 62              | 6.03         | -0.58   | 0.39 | 0.67 |
| DEL9207 | 215 | $34^{2}$        | 13.64        | -0.95   | 0.21      | 1.21       | $34^{2}$        | 5.57         | -1.00   | 0.20 | 0.52 |
| GM9219  | 221 | $39^{2}$        | 17.30        | -0.08   | 0.19      | 1.49       | 392             | 5.94         | 0.16    | 0.14 | 1.18 |
| AJ9201  | 230 | $4^{2}$         | 13.03        | 0.19    | 0.52      | 2.71       | 4 <sup>2</sup>  | 8.32         | 0.24    | 0.42 | 0.72 |
| ALB9211 | 294 | 38              | 11.36        | -0.57   | 0.19      | 0.80       | 36              | 6.97         | -0.25   | 0.15 | 1.46 |
| DEL9212 | 303 | $10^{2}$        | 10.74        | -0.09   | 0.45      | 0.27       | $10^{2}$        | 7.45         | -0.72   | 0.41 | 1.14 |
| DEL9214 | 344 | 8²              | 6.90         | -1.08   | 0.49      | 0.50       | 82              | 7.06         | -0.51   | 0.35 | 0.95 |
|         |     |                 |              |         | Gulf of M | aine East  | :               |              |         |      |      |
| ALB9203 | 100 | $27^{2}$        | 3.09         | -1.56   | 0.20      | 0.67       | $26^{2}$        | 6.76         | 0.16    | 0.19 | 0.69 |
| DEL9206 | 182 | $4^{2}$         | 12.03        | 1.67    | 0.43      | 1.48       | $4^{2}$         | 6.98         | -2.59   | 0.40 | 1.77 |
| AJ9201  | 238 | $11^{2}$        | 12.60        | -0.14   | 0.34      | 1.99       | $10^{2}$        | 9.19         | -0.20   | 0.41 | 2.31 |
| ALB9211 | 292 | 35              | 11.16        | -1.05   | 0.20      | 0.80       | 27              | 8.75         | 0.07    | 0.21 | 1.27 |
| DEL9212 | 304 | $11^{2}$        | 11.07        | -1.19   | 0.27      | 0.33       | $10^{2}$        | 9.35         | -1.49   | 0.27 | 1.49 |
| DEL9214 | 351 | $5^2$           | 7.10         | -1.37   | 0.39      | 0.34       | $5^{2}$         | 7.08         | -1.64   | 0.40 | 0.35 |
|         |     |                 |              |         | George    | es Bank    |                 |              |         |      |      |
| DEL9201 | 12  | $31^{2}$        | 6.87         | 0.11    | 0.21      | 0.68       | $30^{2}$        | 7.02         | 0.09    | 0.20 | 0.93 |
| DEL9202 | 33  | 65              | 5.08         | -0.56   | 0.18      | 0.63       | 62              | 5.15         | -0.93   | 0.22 | 1.00 |
| AD0203  | 63  | 26              | 4.30         | -0.14   | 0.25      | 0.51       | 23              | 4.46         | -0.43   | 0.27 | 1.06 |
| ALB9203 | 92  | 46              | 3.87         | -0.85   | 0.20      | 0.99       | 41              | 4.23         | -0.62   | 0.22 | 0.84 |
| ALB9204 | 124 | $35^{2}$        | 3.68         | -3.06   | 0.28      | 1.97       | $26^{2}$        | 4.28         | -1.54   | 0.25 | 0.96 |
| ALB9205 | 140 | $28^{2}$        | 5.59         | -2.60   | 0.23      | 1.00       | $27^{2}$        | 4.38         | -2.43   | 0.32 | 0.85 |
| DEL9206 | 180 | $19^{2}$        | 11.95        | 0.02    | 0.23      | 1.56       | $19^{2}$        | 9.12         | -0.97   | 0.24 | 1.92 |
| OR9204  | 230 | $24^{2}$        | 16.02        | 0.22    | 0.23      | 2.42       | $23^{2}$        | 10.90        | -0.72   | 0.26 | 1.50 |
| ALB9211 | 283 | 55              | 14.50        | -0.31   | 0.19      | 1.07       | $48^{2}$        | 12.76        | -0.13   | 0.16 | 1.50 |
| DEL9212 | 305 | 68              | 11.95        | -1.16   | 0.18      | 0.78       | 67              | 11.89        | -0.49   | 0.17 | 1.20 |
| DEL9214 | 348 | $62^{2}$        | 7.95         | -1.10   | 0.13      | 0.54       | 60 <sup>2</sup> | 8.10         | -1.16   | 0.13 | 0.79 |
|         |     |                 |              | Midd    | le Atlant | ic Bight I | North           |              |         |      |      |
| DEL9201 | 8   | $24^{2}$        | 6.66         | -0.29   | 0.31      | 0.95       | 22 <sup>2</sup> | 6.58         | -0.36   | 0.34 | 1.29 |
| DEL9202 | 42  | $25^{2}$        | 3.55         | -0.59   | 0.28      | 0.86       | $25^{2}$        | 3.56         | -0.49   | 0.30 | 1.32 |
| AD0203  | 57  | 41              | 4.77         | 0.26    | 0.28      | 0.86       | 36              | 5.23         | -0.20   | 0.34 | 1.39 |
| ALB9203 | 80  | 58              | 4.41         | 0.27    | 0.27      | 0.67       | 52              | 4.77         | -0.30   | 0.34 | 1.48 |
| DEL9203 | 82  | 10 <sup>2</sup> | 5.84         | -0.05   | 0.66      | 0.54       | $5^{2}$         | 6.02         | -0.2    | 0.75 | 0.83 |
| DEL9206 | 170 | $19^{2}$        | 14.73        | -0.81   | 0.32      | 1.35       | 19 <sup>2</sup> | 6.99         | -0.43   | 0.35 | 0.90 |
| OR9204  | 221 | 13 <sup>2</sup> | 21.40        | 0.73    | 0.37      | 1.06       | 13 <sup>2</sup> | 7.72         | -1.17   | 0.38 | 1.25 |
| ALB9211 | 270 | 59              | 18.13        | 0.31    | 0.27      | 1.23       | $52^{2}$        | 12.50        | 0.09    | 0.34 | 2.16 |
| DEL9212 | 300 | 19 <sup>2</sup> | 12.64        | -0.98   | 0.34      | 0.56       | 18 <sup>2</sup> | 13.08        | -0.12   | 0.39 | 0.96 |
| DEL9214 | 338 | $21^{2}$        | 9.69         | -0.50   | 0.33      | 0.65       | 19 <sup>2</sup> | 10.09        | -0.63   | 0.38 | 1.04 |
|         |     |                 |              | Midd    | le Atlant | ic Bight S | South           |              |         |      |      |
| AD0203  | 47  | 48              | 6.57         | 0.05    | 0.29      | 1.66       | 40              | 6.85         | 0.43    | 0.38 | 1.40 |
| ALB9203 | 69  | 79              | 6.96         | 1.00    | 0.26      | 1.68       | 71              | 7.13         | 1.51    | 0.32 | 1.30 |
| DEL9205 | 89  | 5 <sup>2</sup>  | 6.32         | 0.04    | 1.00      | 0.87       | $4^{2}$         | 7.03         | -0.66   | 1.28 | 2.70 |
| DEL9206 | 167 | 54              | 17.79        | -1.40   | 0.26      | 1.41       | 54              | 9.17         | -0.40   | 0.29 | 1.91 |
| OR9204  | 218 | 43 <sup>2</sup> | 23.20        | -0.89   | 0.25      | 0.83       | 43 <sup>2</sup> | 7.85         | 0.10    | 0.28 | 1.53 |
| ALB9211 | 262 | 56              | 22.02        | 0.63    | 0.36      | 1.11       | 51              | 13.56        | -1.00   | 0.42 | 2.74 |

<sup>1</sup> "CRUISE", the code name for a cruise; "CD", the calendar mid-date of all the stations within a region for a cruise; "#Obs", the number of observations included in each average; "Temp", the areal average temperature; "Anomaly", the areal average temperature anomaly; "SDV1", the standard deviation associated with the average temperature anomaly; "SDV2", the standard deviation of the individual anomalies from which the average anomaly was derived.

<sup>2</sup> A true areal average could not be calculated due to poor station coverage and that the average values listed were derived from a simple average of the observations that were within the region.



Figure 1. The region of the northeast continental shelf covered by the Northeast Fisheries Science Center cruises during 1992. The boundaries of the five areas of the shelf for which average temperature and anomaly values are calculated are shown: western Gulf of Maine, eastern Gulf of Maine, Georges Bank, northern Middle Atlantic Bight, and southern Middle Atlantic Bight.



Figure 2. The 1992 areal average surface and bottom temperature values from Table 3. They are presented by the mean calendar day (CD) of the observations within a particular region during a cruise. Averages marked with an asterisk in Table 1 are not included here because they do not represent a "true" areal average and may be biased by the location of stations within a region.



Figure 3. The 1992 areal average surface and bottom temperature anomalies from Table 3. Anomalies are presented by the mean calendar day (CD) of the observations within a particular region during a cruise.



Figure 4. Hydrographic stations occupied during the larval herring/sand lance study DEL9201.

Page 17

Page 18







Figure 6. The surface and bottom salinity distribution for the larval herring/sand lance study DEL9201.



Figure 7. The surface and bottom temperature anomaly distribution for the larval herring/sand lance study DEL9201.

69

68

70

6 - 20 JANUARY 1992

67

BTM TEMP ANOMALY (DEG C)

66

40

200 meter



Figure 8. Hydrographic stations occupied during the larval herring/sand lance study DEL9202.

Page 22



Figure 9. The surface and bottom temperature distribution for the larval herring/sand lance study DEL9202.











Figure 11. The surface and bottom temperature anomaly distribution for the larval herring/sand lance study DEL9202.



Figure 12. Hydrographic stations occupied during the winter flounder survey ALB9202 / DEL9203.



Figure 13. The surface temperature distribution for the winter flounder survey ALB9202 / DEL9203.



Figure 14. The bottom temperature distribution for the winter flounder survey ALB9202 / DEL9203.



Figure 15. The surface salinity distribution for the winter flounder survey ALB9202 / DEL9203.



Figure 16. The bottom salinity distribution for the winter flounder survey ALB9202 / DEL9203.














Figure 20. The surface temperature distribution for the spring bottom trawl survey ALB9203.











Figure 23. The bottom salinity distribution for the spring bottom trawl survey ALB9203.











Figure 26. Hydrographic stations occupied during the marine mammal sighting survey DEL9205.



Figure 27. Hydrographic stations occupied during the harbor porpoise migration study EG9201.



Figure 28. Hydrographic stations occupied during the larval cod survey ALB9204.





2.10.14

1. 2. E. A







1.1







Sec. 14





1.5

Page 47



Figure 34. The surface and bottom salinity distribution for the stratification study ALB9205.



 $\mathcal{O}_{\mathcal{O}}^{(n)} = \mathcal{O}_{\mathcal{O}}^{(n)}$ 





Figure 36. Hydrographic stations occupied during the harbor porpoise migration study EG9202.



Figure 37. Hydrographic stations occupied during the clam survey DEL9206.



Figure 38. The surface temperature distribution for the clam survey DEL9206.



Figure 39. The bottom temperature distribution for the clam survey DEL9206.



## Figure 40. The surface salinity distribution for the clam survey DEL9206.



Figure 41. The bottom salinity distribution for the clam survey DEL9206.



Figure 42. The surface temperature anomaly distribution for the clam survey DEL9206.



Figure 43. The bottom temperature anomaly distribution for the clam survey DEL9206.









1.1.1.1



Figure 46. The surface and bottom temperature distribution for the summer bottom trawl survey DEl9207.



Figure 47. The surface and bottom salinity distribution for the summer bottom trawl survey DEl9207.



Figure 48. Hydrographic stations occupied during the harbor porpoise sighting survey AJ9201.



1. X.





Figure 50. Hydrographic stations occupied during the scallop survey ORE9204.



## Figure 51. The surface temperature distribution for the scallop survey ORE9204.



Figure 52. The bottom temperature distribution for the scallop survey ORE9204.

.



Figure 53. The surface salinity distribution for the scallop survey ORE9204.



Figure 54. The bottom salinity distribution for the scallop survey ORE9204.


Figure 55. The surface temperature anomaly distribution for the scallop survey ORE9204.



Figure 56. The bottom temperature anomaly distribution for the scallop survey ORE9204.



## Figure 57. Hydrographic stations occupied during the shrimp survey GM9212.



Figure 58. The surface and bottom temperature distribution for the shrimp survey GM9219.

4. N. A.



 $\mathcal{F}_{\mathcal{A}}(\mathcal{G}) = \mathcal{F}_{\mathcal{A}}(\mathcal{G})$ 

Figure 59. The surface and bottom temperature anomaly distribution for the shrimp survey GM9219.



Figure 60. Hydrographic stations occupied during the fall bottom trawl survey ALB9211.



Figure 61. The surface temperature distribution for the fall bottom trawl survey ALB9211.



Figure 62. The bottom temperature distribution for the fall bottom trawl survey ALB9211.



Figure 63. The surface salinity distribution for the fall bottom trawl survey ALB9211.



Figure 64. The bottom salinity distribution for the fall bottom trawl survey ALB9211.



Figure 65. The surface temperature anomaly distribution for the fall bottom trawl survey ALB9211.



Figure 66. The bottom temperature anomaly distribution for the fall bottom trawl survey ALB9211.



Figure 67. Hydrographic stations occupied during the larval herring/sand lance study DEL9212.







Figure 69. The surface and bottom salinity distribution for the larval herring/sand lance study DEL9212.



Figure 70. The surface and bottom temperature anomaly distribution for the larval herring/sand lance study DEL9212.



## Figure 71. Hydrographic stations occupied during the larval herring/sand lance study DEL9214.





Page 85



Figure 73. The surface and bottom salinity distribution for the larval herring/sand lance study DEL9214.





